
Introduction to computer physics (Spurzem, Klessen)
Robin Heinemann

6. Mai 2018

Inhaltsverzeichnis
1 ODE’s Ordinary differential equations 1

1.1 Gravitational 2-body problem . 1
1.1.1 Elementary numerical solution: Euler Method . 3
1.1.2 Higher-Order Schemes: Verlet . 4
1.1.3 Higher-Order Schemes: Leap-Frog . 5

1.2 Runge-Kutta Integration . 5
1.2.1 Integration through Taylor Expansion . 7
1.2.2 Forth Order Runge-Kutta Method . 9
1.2.3 Generalized Runge-Kutta algorithms . 10
1.2.4 Adaptive Step Size . 11

1 ODE’s Ordinary differential equations
1.1 Gravitational 2-body problem
Newton’s equation for the relative motion of two bodies under their mutual gravitational force is given by

r⃗ = x⃗1 − x⃗2 ¨⃗r = −GM

r2
r⃗

r
M = m1 +m2

G = 6.67× 10−8 cm3 g−1 s−2

m1 gets accelerated bym2, respectivlym2 bym1:

F⃗ 12 = m1 a⃗1

F⃗ 21 = m2 a⃗2

Newton 3 =⇒

F⃗ 12 = − F⃗ 21

=⇒ m1 a⃗1 = −m2 a⃗2 =⇒ a⃗2 =
m1

m2
a⃗1

|F21| = |F12| =
Gm1m2

r2

=⇒ ¨⃗r = a⃗ =
m1 +m2

m1m2
m1 a⃗1

=⇒ µ¨⃗r = −Gm1m2

r2
r⃗

r

1

1 ODE’s Ordinary differential equations 2

Simplification 1: 2. order ordinary differential equation→ 2× first order differential equation.
Construct a system of first order ordinary differential equations:

˙⃗r = v⃗ v⃗ = velocity

˙⃗v = −GM

r2
r⃗

r

Now look for „symmetries“ → conserved quatities / properties

1. energy:E = T + U =
µv2

2
− GM

r

2. angular momentum L⃗ = r⃗ × p⃗ = r⃗ × µv⃗,
˙⃗
j

3. Lenz vector (Laplace-Runge-Lenz)

e⃗ =
v⃗ × j⃗

GM
− r⃗

r
related to eccentricity

e⃗ · r⃗ =
r⃗
(
v⃗ × j⃗

)
GM

− r⃗ r⃗

r

=
j⃗ · (r⃗ × v⃗)

GM
− r

= j2 − r

e⃗ r⃗ = er cos(φ)

=⇒ r(φ) =
j2/(GM)

1 + e cos(φ)

for (closed) elliptical orbits

e =
ra − rp
ra + rp

(eccentricity)

second check: look for conserved quantities.
Simplification 3: search for non-dimensional represenation.

s⃗ =
r⃗

R0

ω⃗ =
v⃗

V0

τ =
t

T
R0 = arbitrayry radius (say initial separation)

V0 =

√
GM

R0

T0 =
R0

V0

Our set of equations then reads
d s⃗

dτ
= ω⃗

d ω⃗

dτ
= − s⃗

s3

For a bound system (E = T + U < 0), we know that the sollution is an ellipse around the coordintae center.
This can be used to test the validity and accuracy of the numerical solution.

1 ODE’s Ordinary differential equations 3

1.1.1 Elementary numerical solution: Euler Method

The simplest approach to solve this system is to replace the derivatives by first order differential quotients. We
discretize the time evolution ito discrete steps i of af fixed width h = τi − τi−1. We get

d s⃗i
dτ

=
s⃗i − s⃗i−1

τi − τi−1
O(h)

with s⃗i = s⃗(τi) desribing the state of the system (location of the body) at step i. The symbolO(h) denotes that
the error we make by this approximation is of linear order fo the step size h. Multiplying with h leads to

h
d s⃗i
dτ

= s⃗i − s⃗i−1 +O
(
h2

)
Applying the same procedure to d ω⃗i/dτ results in

h
d ω⃗i

dτ
= − s⃗i

s3i
+

s⃗i−1

s⃗2i−1

+O
(
h2

)
Rearaanging givess

s⃗i = s⃗i−1 + ω⃗i−1h+O
(
h2

)
ω⃗i = ω⃗i−1 +

s⃗i−1

s3i−1

h+O
(
h2

)

This is the forward Eulermethod. It is an explicit method, because all quantities required to advance the system
from time τi−1, by a discrete step of size h are know at the start of the step. To test the accuracy and validity of
the method, we can look at the evolution of the three conserved parameters

• total energy:Ei =
ω2
i

2
− 1

si

• angular momentum: ji = s⃗i × ω⃗i

• Laplace-Runge-Lenz vector e⃗i = ω⃗i × (s⃗i × ω⃗i)− s⃗i

The question we ask is whether these quantities remain constant or evolve with time. Or phrasing this diffrently:
does our algorithm prevent the accumulation of truncation and integration errors, or do these unavoidable
discretization errors add upwithout bounds. The quantity that is usually lokked at the characterzie this behavior
is the relative error at step i compared to the the initial value at 0. For the 2-body problem, the easiest quantity
to consider is the relative error in the total energy of the system

εi(h) =
|Ei − E0|

|E0|

Question 1: How does the forward eulerMethod behave?We can speculate about the answer along the following
line of reasoning:We need roughly 1/h steps to cover one orbit. So despite the fact that each step is second order
in h, the global error for one full orbit is expected to beO

(
h2

)
·O

(
h−1

)
= O(h), that is only linear in step size

h.

1 ODE’s Ordinary differential equations 4

1.1.2 Higher-Order Schemes: Verlet

From the previous section, we conclude that a first order algorithm usually performes insufficiently. One way
to remedy this problem is to develop higer-order integration schemes. The idea of the Verlet method is to
Taylor expand the solution and keep terms up to third order, meaning that the error is of forth order. These
are acceleration a⃗ and jerk b⃗ = ˙⃗a, the change of the acceleration. Let us adopt the notation h = ∆t for the step
size and Taylorexpand the system around the time t forwards by ∆t and backwards by−∆t:

s⃗(t+∆t) = s⃗(t) + ω⃗(t)∆t+
1

2
a⃗(t)∆t2 +

1

6
b⃗(t)∆t2 +O

(
∆t4

)
s⃗(t−∆t) = s⃗(t)− ω⃗(t)∆t+

1

2
a⃗(t)∆t2 − 1

6
b⃗(t)∆t2 +O

(
∆t4

)
adding these both together leaves us with

s⃗(t+∆t) = 2 s⃗(t)− s⃗(t−∆t) + a⃗(t)∆t2 +O
(
∆t4

)
Which is a numerical scheme of forth order in space. Note that this only works, because the acceleration only
depends on the position s⃗(t). The situation becomesmore complicatedwhen a⃗(t) depends on other parameters,
such as the velocity ω⃗(t) as in the case of Lorentz forces for charged particeles in a magnetic field. In general, the
order in which we evaluate the different terms becomes important. Note also, that the accuracy in the velocity
ω⃗ is onlyO

(
∆t3

)
. More severly, the equation becomes implicit, meaning that information of a future timestep

is needed. Implicit schemes typically require an iterative approach to solve.

ω⃗(t) =
s⃗(t+∆t)− s⃗(t−∆t)

2∆t
− 1

6
b⃗(t)∆t2 +O

(
∆t3

)
Related to the above approach, and more commonly used, is the velocity Verlet algorithm. It reads

s⃗(t+∆t) = s⃗(t) + ω⃗(t)∆t+
1

2
a⃗(t)∆t2 + (O)

(
∆t3

)
ω⃗(t+∆t) = ω⃗(t) +

a⃗(t) + a⃗(t+∆t)

2
∆t+O

(
∆t2

)
where we Taylor expand the velocity equation to second order and replace the acceleration at t by the average
of the acceleration and t and t + ∆t. If the acceleration is a function of position s⃗ only, this can be solved by
adjusting the order with wich the system is integrated:

1. calculate new position

2. update acceleration

3. calculate new velocity

We understand the underlying structur of the Verlet scheme better as combination of diffrent first oder steps, if
we introduce half time intervals

1. ω⃗

(
t+

1

2
∆t

)
= s⃗(t) +

1

2
a⃗(t)∆t

2. s⃗(t+∆t) = s⃗(t) + ω⃗

(
t+

1

2
∆t

)
∆t

3. a⃗(t+∆t) = F⃗ (s⃗(t+∆t))

4. ω⃗(t+∆t) = ω⃗

(
t+

1

2
∆t

)
+

1

2
a⃗(t+∆t)∆t

The Verlet scheme therefore belongs to the group of semi-implicit Euler methods. In this implemenation it is
also closely related to the leap-frog integration scheme that we discuss in the next section, however unlike the
leap-frog, it hat s⃗ and ω⃗ defined at the same time.

1 ODE’s Ordinary differential equations 5

1.1.3 Higher-Order Schemes: Leap-Frog

Closely related to the Verlet scheme is the leap-frog method. Unlike Verlet, we are giving up on the requivement
that location s⃗ and velocity ω⃗ are known at the same time. Instead they are considered perfectly interlaced, hence
the name leap frop. Consequently, the method requives infromation from two timesteps for the integration.
Introducing agian the notion of half timesteps, the method reads:

1. update location: s⃗
(
t+

1

2
∆t

)
= s⃗

(
t− 1

2
∆t

)
+ ω⃗(t)∆t+O

(
∆t2

)
2. update velocity: ω⃗(t+∆t) + a⃗

(
t+

1

2
∆t

)
∆t+O

(
∆t3

)
The positions are always updated at half timesteps, while the velocity lives on full timesteps. This approach is
called ’drift-kick-drift’ implemenation. The order of integration could also be interchanged, then we speak of
the ’kick-drift-kick’ scheme. Because s⃗ and ω⃗ are never synchronized, the scheme needs to be started and ended
at times when input is received or output is written, for which positions and velocities need to be in sync. To
achive that, the system is typically initiatedwith a half step using the forward Eulermethod (or any other suitable
approach). The reduced accuracy for this half step is typically not an issue, becausemost of the time integration is
then achieved with second order leap-frog. The fact that leap-frog integrators are of second order accuracy may
seem surprising, given that they at first sight correspond to a Taylor expansion to first order. However the highr
order is achived by the asynchronicity of the integraiton. The reason it works lies in the symplectic nature of
the integration scheme, that reflects the symplectic symmetry ofHamiltonianmechanics. Symplectic integration
schemes conserve the total energy of the system extremely well, because they are fully time reversible. To see
that, integrate the sysetm from state

(
s⃗, ω⃗i− 1

2

)
to

(
s⃗i+1, ω⃗i+ 1

2

)
, and return:

s⃗final = s⃗i+1 − ω⃗i+ 1
2
∆t

=
(
s⃗i + ω⃗i+ 1

2
∆t

)
− ω⃗i+ 1

2
∆t = s⃗i

ω⃗final = ω⃗i+ 1
2
− a⃗i∆t

=
(
ω⃗i− 1

2
+ a⃗i∆t

)
− a⃗i∆t = ω⃗i

This would not work for other methods, such as the forward Euler, as this uses quantities that are only known at
the curretn step. For example, fo find the position at (i+ 1) the velocity ω⃗i is used, however when going back
from (i+ 1) to i then ω⃗i+1 is taken. Because typically ω⃗i+1 ̸= ω⃗i, we never precisely come back to the original
startic position. The leap-frog integrator is related to the Verlet method. Compare the following two approaches:
Verlet:

ω⃗i+ 1
2
= ω⃗i + a⃗i

∆t

2
s⃗i+1 = s⃗i + ω⃗i+ 1

2
∆t

= s⃗i + ω⃗i∆t+
1

2
a⃗i∆t2

ω⃗i+1 = ω⃗i+ 1
2
+ a⃗i

∆t

2

= s⃗i +
1

2
(a⃗i + a⃗i+1)∆t

Leap-frog:

ω⃗i+ 1
2
= ω⃗i− 1

2
+ a⃗i∆t

s⃗i+1 = s⃗i + v⃗i+ 1
2
∆t

1.2 Runge-Kutta Integration
Ordinary differential equations are a very common way to mathematically formulate the dynamical evolution of
physical systems. Frequently the problemat hand corresponds to an initial value problem, such as the gravitational

1 ODE’s Ordinary differential equations 6

dynamics discussend above.Once the inital state of the system is fully specified, by providing initial values for the
functions to solve for as well as for their derivatives, we can integrate to obtain a unique solution. Other typical
situations require us to provide boundary conditions, for example when we want to calculate the potential that
corresponds to specificmass or charge distributions, orwhenweneed to compute eigenvalues and eigenfunctions
of differential operators. As mentioned earlier we note that every system of ordinary differential equations of
higher order can be reduced to a system of first order ordinary differential equations. Consider the following
ordinary differential equation of order n

y(n)(x) = f
(
y(n−1), y(n−2), . . . , y(1), y, x

)
where y(x) is a function of x and y(n)(x) is its n-th derivative with respect to x. The function f describes,
how y(n)(x) depends on the lower-oder derivatives of y(x) as wenn as on x explicitly. Introduce the following
definitons and abbreviations:

y(n)(x) = f
(
y(n−1), y(n−2), . . . , y′′, y′, y, x

)
y(n)(x) =

dn

dxn
y(x)

define

y0 = y

y1 = y′

...

yk = y(k) = y′k−1∀k = 0, . . . , n− 1

Then we obtain the following set of first order ordinary differential equations that is equivalent

y′0 = y1

y′1 = y2
...

y′n−2 = y′n−1

y′n− 1 = f(yn−1, yn−2, . . . , y2, y1, y0, x)

Introducing vector notation, we can write in short

y⃗′(x) = f⃗(y⃗(x), x)

Existence:LipschitzConditionThe existence anduniqueness of a solutionof the initial value problem y⃗(x0) =
y⃗0 in the vicinity of (y⃗0, x0) is guaranteed, if∥∥∥ f⃗(y⃗, x)− f⃗(z⃗, x)

∥∥∥ ≤ λ
∥∥∥ y⃗ − k⃗

∥∥∥
for all y⃗, z⃗, x in vicinity of (y⃗0, x0) and where λ > 0 is a real number and ∥. . .∥ is an arbitrary vector norm.
Intuitively the Lipschitz contiuitymeans that the absolute value of the slope of the line connecting the two points
is bounded by λ > 0. A stronger (more restrictive) condition is that f⃗ is continuous in the region of interest and
sufficiently often differentiable. Even stronger: f⃗ is analytic, meaning that it is infinitely differentiable.

1 ODE’s Ordinary differential equations 7

1.2.1 Integration through Taylor Expansion

In the following, let us consider the simple one-dimensional function y(x), which gives rise to the first order
ordinary differential equation

y′ = f(y, x) with initial value y(x0) = y0

Its solutions are trajectories in the two-dimensional space (x, y). We consider the integration along discrete
coordinate values xn = x0 + nh

xn+1 = xn + h = x0 + nh

y(xn+1) = yn+1 =?

Let us now Taylor expand this to find a suitable integration scheme

y(x+ h) = y(x) + hy′(x) +
h2

2
y′′(x) +

3

8
y(3)(x) + ≀

(
h4

)
y′(x) = f(y(x), x)

y′′(x) =
d2

dx2
(y) =

d

dx
f(y(x), x) =

dy

dx

df

dy

∣∣∣
(y,x)

+
df

dx

∣∣∣
(y(x),x)

= f · fy + fx

y(3)(x) =
d3

dx3
y(x) =

d

dx
(ffy + fx)

=
d

dy
(ffy + fx)

dy

dx
+

d

dx
(ffy + fx) = (fyfy + ffyy + fyx)f + fxfyffxyfxx

fx =
df

dx

fy =
df

dy

fxy =
d2f

dxdy
=

d2f

dydx
= fyx

y(x+ h) = y(x) + hf +
h2

2
(ffy + fx) +

h3

6

(
fxx + 2ffxy + f2fyyff

2
y + fxfy

)
+ ≀

(
h4

)
note

y(n)(x) =
dn

dxn
y(x) =

dn−1

dxn−1
f(y(x), x) =

(
f
∂

∂y
+

∂

∂x

)n−1

f =

(
f
d

dy
+

d

dx

)n−1

f

= ff (n−1)
y + f (n−1)

x

This aproach can be used to construct methods of arbitrary high accuracy and order. However, the problem ist
that the higher order derivatives need to be constructed recursively. This is normally very complicated and slow.
Note: The Euler scheme, simply corresponds to the first order Taylor expansion:

yi+1 = yi + h · f(yi, xi)

These schemes are so-called one-step methods, because they propagate the solution through the integration
interval h in one single step. Because it is often complicated to construct higher-order derivatives, it is often
a better idea to approximate or substitute the derivatives through a smart combination of function evaluation
at specific locations within one integration interval h. This is the central idea of the Runge-Kutta integration
method. To see how this may work, let us consider

y(xi+1) = yi+1 = yi + hf(yi, xi)
h2

2
(fx(yi, xi) + fy(yi, xi)f(yi, xi)) +O

(
h3

)

1 ODE’s Ordinary differential equations 8

which we use to approximate y(xi+1). Alternatively to the Taylor expansion, we could try to obtain an estimate
for y(xi+1) by direct integration:

yi+1 = yi +

∫ xi+1

xi

f(y(x), x)dx

This integral canbe solvedbynumerical quadrature, inwhich the function is evaluated at a finite set of integration
points within the interval [xi, xi+1]. Let N be the number of integration points ξ1, . . . , ξN ∈ [xi, xi+1], for
example ξij = xi + ajh with 0 ≤ aj ≤ 1, then we obtain

yi+1 = yi + h
N∑
j=1

cjf(y(ξij), ξij)

The coefficient cj are weight functions that determine the contribution of the function evaluation at xij to the
quadrature integration. The values of cj as well as the best choice of aj can be obtained by direct comparison
with the Taylor expansion. Let us demonstrate this procedure by looking at the example of the derivation of the
second Runge-Kutta integration scheme. For that consider again

yi+1 = yi + hf +
h2

2
(fx + fyf) +O

(
h3

)
where we evaluate f and the derivatives fx and fy at the position (yi, xi). For the comparison, we adopt the
following approach

y(xi+1) = yi+1 + hbif(yi, xi) + hb2f(yi + ha21f(yi, xi), xi + c2h)

We Taylor expand the last term to first order,

f(yi + ha21f, xi + c2h) = f + c2hfx + ha21ffy

where again all terms are computed at (yi, xi) unless otherwise stated. Put together, we obtain

yi+1 = yi + hb1f + hb2(f + hc2fx + ha21ffy)

= yi + h(b1 + b2)f + hc2a21(fx + ffy) if we set c2 = a21

If we compare the coefficients, then we obtain

b1 + b2 = 1, b2a21 =
1

2

recalling again that we have already set c2 = a21. Because we have two equations for three unknowns, we have
one degree of freedomand choose b2 = γ. Finally, we obtain the following integration formula

xi+1 = xi + h

yi+1 = yi + h

(
(1− γ)f(yi, xi) + γf

(
yi +

h

2γ
f(yi, xi), xi +

h

2γ

))
Depending on the choice of γ, we obtain several integration schemes.
γ = 0: This is the standard forward Euler scheme. The parameters are b1 = 1 and b2 = 0 a21 and c2 are not
needed. It simply corresponds to a Taylor expansion to first order

k1 = hf(yi, xi)

xi+1 = xi + h

yi+1 = yi + k1 +O
(
h2

)

1 ODE’s Ordinary differential equations 9

γ = 1/2: This is the classical second-order Runge-Kutta method, sometimes simply called RK2. It hat b1 =
b2 = 1/2 and a21 = c2 = 1, and reads:

k1 = hf(yi, xi)

k2 = hf

(
yi +

k1
2
, xi +

h

2

)
xi+1 = xi + h

yi+1 = yi +
1

2
(k1 + k2) +O

(
h3

)
The RK2 method evaluates the integration interval h at two locations. First, it uses the slope obtained at the
starting point (yi, xi) to obtain an estimate for the function the midpoint. Finally, the arithmetic mean of both
slopes is used to actually advance the system across the entire interval h.
γ = 1: This is the classical midpoint rule, also called Euler-Cauchy method. The parameters are b1 = 0, b2 = 1
and a21 = c2 = 1/2. It takes the prediction of the slope f at the midpoint of the integration interval to advance
the system across the ful interval:

k1 = hf(yi, xi)

k2 = kf

(
yi +

k1
2
, xi +

h

2

)
xi+1 = xi + h

yi+1 = yi + k2 +O
(
h3

)
Sometimes, this method is called RK2. The trial step at the midpoint helps to cancle higher order terms. The
RK2 and midpoint rule use two function evaluations in the interval h to advance the solution.

1.2.2 Forth Order Runge-Kutta Method

The most commonly used method is RK4, the forth order Runge-Kutta scheme. It reaches forth order accuracy
by evaluating the function f(u, x) four times in within one step. It is defined in the following way:

k1 = hf(yi, xi)

k2 = hf

(
yi +

k1
2
, xi +

h

2

)
k3 = hf

(
yi +

k2
2
, xi +

h

2

)
k3 = hf(yi + k3, xi + h)

xi+1 = xi + h

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4) +O

(
h5

)
RK4 evaluates the function at four diffrent positions:

• k1 = slope at the start of the integration interval, using the endpoints of the previous step xi and yi to
evaluate f(yi, xi).

• k2 = slope in the middle of the integration interval, at xi = xi + h/2. We use Euler with k1 to obtain an
estimate for y′ at this position. That is, we evaluate f(yi + k1/2, xi + h/2).

• k3 =we again obtain an estimate for the slope at h/2, however, this time we use the previous estimate k2
to get an estimate for y′. We compute f(yi + k2/2, xi + h/2).

1 ODE’s Ordinary differential equations 10

• k3 = slope at the end of the interval, xi + h. This time we use k3 to evaluate f(yi + k3, xi + h).

The combination
yi+1 = yi + (k1 + 2k2 + 2k3 + k4)/6

reaches fourth order accuracy.

1.2.3 Generalized Runge-Kutta algorithms

The examples above motivate the folowing general formula to construct Runge-Kutta integration schemes of
arbitrary high order: Let us define s positions within the integration interval h, x̃j = xi + hcj as well as the
same number of function estimates ỹj with j = 1, 2, . . . , s to define coordinates for the evaluation of the slope
at f(ỹj , x̃j). We always start with the evaluation at the start of the interval, and so c1 = 0. The general Runge-
Kutta formula to integrate the function y(x) accross the interval h reads as follows

x̃s = xi + hcs

ỹs = yi + h

s−1∑
j=1

aijf(ỹj , x̃j)

xi+1 = xi + h

yi+1 = yi + h

s∑
j=1

bjf(ỹj , x̃j)

This gives rise to a very compact notation. The Matrix A = Ajl with j = 1, . . . , s and l = 1, . . . , s is called
Runge-Kutta matrix, while the vectors b⃗ = bj and c⃗ = cj are called Runge-Kutta weights and Runge-Kutta
nodes respectively. As in the above example, all equations can be explititly calculated recursively. A is a lower
triangular matrix with zero on the diagonal. Note that ifA is fully occupied, the numerical scheme represents an
implicit Runge-Kutta method, wich can only be solved interatively. Any Runge-Kutta scheme can be described
in a very compact form via a Runge-Kutta tableau as[

c⃗ A

b⃗T

]
The standard Runge-Kutta method of fourth order is

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6


The other methods, mentioned thus far, can be described by the following Runge-Kutta tableaus Euler: 0 0 0

0 0 0
0 0 1


RK2  0 0 0

1 1 1
0 1

2
1
2


midpoint rule  0 0 0

1
2

1
2 0

0 0 1



1 ODE’s Ordinary differential equations 11

1.2.4 Adaptive Step Size

One key advantage of Runge-Kutta algorithms is that they allow for adaptive step sizes. Because they are not
time-symmetric and because they only requive information available at the beginning of the integration interval,
it is possible to change the step size as the system is integrated. This feature is a prerequisite for many effective
integration algorithms in computational physics. For example, consider the calculation of the absorption cross
section of electromagnetic waves for bound elections in a simple two-level system. The relevant equation is

¨⃗x+ γ ˙⃗x+ ω2 x⃗ =
e

m
E⃗eiωt

describing the response (amplitude x⃗) of a damped harmonic oscillator with resonance frequency ω0 to an
external perturbation with frequency ω. Furthermore,

γ =
2e2

3mc3
ω2
0 is the damping term

ω0 = resonance frequency of the bound orbin, corresponding to the energy difference∆E = ℏω0 between the
energy states of the two-level system
ω = frequency of the incident electromagnetic wave with polarization E⃗
e,m are electron charge and mass
ℏ, c are the Planck constant and the speed of light.
We obtain the cross section as function of frequency as

σ(ω) =
8π

3

ω4(
ω2 − ω2

0

)2
+ γ2ω2

which relates to the classical Thomson cross section

σT =
8π

3
r20 with the classical electron radius r0 =

e2

mc2

For a detailed derivation, see J.D. Jackson „Classical Electrodynamics“. The resulting curve exhibits three regimes:
ω ≫ ω0 : In the high energy limit, Ephoton ≫ ∆E, the oscillator responds to the high-frequency forcing by
adopting the forced frequency. The photons of the electromagnetic wave essentially see free electrons. This is
the regime of Thomson scattering and σ(ω) ≈ σT
ω ≈ ω0: This is the regime of resonant scattering. The absorption cross section reaches a maximum of

σ(ω) ≈ σT
ω4

((ω − ω0)(ω + ω0))
2 + γ2ω2

0

≈ 8π

3

(
e2

mc2

)2
ω2
0

4(ω − ω0)
2 + γ2

≈ 8π

3

(
e2

mc2

)2
3mc3

2e2
1

2

γ/2

(ω − ω0)
2 + (γ/2)2

≈ 2π
e2

mc

γ/2

(ω − ω0)
2 + (γ/2)2

The resonant lite follows a so-called Lorentz profile around the peak.
ω ≪ ω0: In the low energy regime, the cross section increases as

σ(ω) = σT

(
ω

ω0

)4

This is the limit of Rayleigh scattering, which is characterized by a strong frequency andwavelength dependence
of the cross section.When looking at the frequency dependence of the cross section, it is clear that there is a large

1 ODE’s Ordinary differential equations 12

range (ω ≫ ω0) in which σ(ω) is constant, whereas around the resonance peak σ(ω) changes rapidly with ω.
When we scan or integrate along this curve with constant step size ∆ω, when we either waste computational
resources at large frequencies when ∆ω is small enough to well trace the resonance, or if we take large step
sizes (adequate for large ω) we may well describe or even miss the resonance if γ is very small. Consequently, a
method with adaptive step size is needed. With the Runge-Kutta schemes, there are several ways to achieve that.
The most straight-forward one is to do every step twice, once with the normal stepsize h and once with two
smaller steps h/2. Because each RK4 step requires 4 function evaluations, this in prenciple requires an effort of
3× 4 = 12 evaluations. However, because the two steps h and h/2 have the same starting value, the real effort
is just 11 evaluations. If you compare that with the number of evaluations for h/2 only, that is 2× x = 8, then
the overhead of 11/8 = 1.375 is quite reasonable. We compare the results of the two steps for y(x+ h)

y(x+ h) = y1 + c1h
5 y

(5)(x)

5!
+O

(
h6

)
y(x+ h) = y2 + 2c2

(
h

2

)5 y(5)(x)

5!
+O

(
h6

)

where y1 and y2 are the estimates for y(x+ h) for stepsize h and h/2, and where the second term on the right
hand side describes the error to leading order. We know that the difference ∆ = y2 − y1 scales with h5. If we
want this difference to be smaller to some tolerance value∆0, we can obtain an estimate for the required stepsize
as

h0 = h

∣∣∣∣∆0

∆

∣∣∣∣1/5
That is if ∆ > ∆0 then we repeat the step with the new stepsize estimate h0. If the difference is much smaller
than the stepszie can actually be increased. In practice, we try to predict the stepsize for the next step based on
previous values. Nevertheless, we still need to test the actual arror after each step. And so, a less timeconsuming
alternative to the above approach of comparing two different values of h is to look at the difference between the
previous and the current timestep. Other alternatives are to compare two diffrent RK schemes with the same
stepsizeh. For example RK2 and themidpoint rule. For the forth order RKmethod this is the base for the Runge-
Kutta-Fehlberg algorithm that is commonly used in astrophysical hydrodynamics solver. It is frequently called
RKF45 method, and provides stepping of order O

(
h4

)
with an error estimate of order O

(
h5

)
. It requires only

one extra calculation. The error can be estimated and controlled by using the higher order embedded method

1 ODE’s Ordinary differential equations 13

that allows for an adaptive stepsize to be determined automatically.

0

1

4

1

4

3

8

3

32

9

32

12

13

1932

2197
−7200

2197

7296

2197

1
439

216
−8

3680

513
− 845

4104

1

2
− 8

27
2 −3544

2565

1859

4104
−11

40

25

216
0

1408

2565

2197

4104
−1

5
0

16

135
0

6656

12825

28561

56430
− 9

50

2

55


According to the RKF45 tableau the first function estimate is based on five states

yi+1,a = yi + h

(
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5

)
and the second one is based on six evaluations and reads

yi+1,b = yi + h

(
16

135
k1 +

6656

12825
k3 +

28516

56430
k4 −

9

50
k5 +

2

55
k6

)
The usefulness of the method is based on the fact that the same set of kj is used for both estimates. According to
the tableau, the kj are computed as

k1 = f(yi, xi)

k2 = f

(
yi +

1

4
hk1, xi +

1

4
h

)
k3 = f

(
yi +

3

32
hk1 +

9

32
hk2, xi

3

8
h

)
k4 = f

(
yi +

1932

2197
hk1 −

7200

2197
hk2 +

7296

2197
hk3, xi +

12

13
h

)
k5 = f

(
yi +

439

216
hk1 − 8hk2 +

3680

513
hk3 −

845

4104
hk4, xi + h

)
k6 = f

(
yi +− 8

27
hk1 + 2hk2 −

3544

2565
hk3 +

1859

4104
hk4 −

11

40
hk5, xi +

1

2
h

)
Subtracting the two function estimates as

∆ = h

∣∣∣∣ 1

360
k1 +

1

33
k3 −

1

34
k4 +

1

50
k5 +

2

55
k6

∣∣∣∣
If this value is acceptable, then go to the next step. If not, then reject and start again this stepwith smaller stepsize
according to

h0 = h

∣∣∣∣∆0

∆

∣∣∣∣1/5

	ODE's Ordinary differential equations
	Gravitational 2-body problem
	Elementary numerical solution: Euler Method
	Higher-Order Schemes: Verlet
	Higher-Order Schemes: Leap-Frog

	Runge-Kutta Integration
	Integration through Taylor Expansion
	Forth Order Runge-Kutta Method
	Generalized Runge-Kutta algorithms
	Adaptive Step Size

