Analysis 1 - Übungsblatt 9

Wintersemester 2016/2017

Prof. Dr. Anna Marciniak-Czochra, Dr. Frederik Ziebell, Chris Kowall Internetseite: http://www.biostruct.uni-hd.de/Analysis1.php

Abgabe: 13. Januar, 11:00 Uhr in den Zettelkasten (1. Stock Mathematikon)

Aufgabe 9.1

4 Punkte

(a) Zeigen Sie, dass die Exponentialfunktion exp : $\mathbb{R} \to \mathbb{R}_{>0}$ monoton steigend und bijektiv ist mit

$$\exp(q) = e^q \quad \forall q \in \mathbb{Q}$$

für die Eulersche Zahl e.

(b) Die Umkehrfunktion der Exponentialfunktion bezeichnen wir mit $\ln : \mathbb{R}_{>0} \to \mathbb{R}$, der natürliche Logarithmus. Zeigen Sie, dass diese Funktion monoton steigend und stetig ist mit

$$\ln(xy) = \ln(x) + \ln(y)$$
 und $\ln(x^q) = q \ln(x)$ $\forall x, y \in \mathbb{R}_{>0}, q \in \mathbb{Q}$.

Hinweis: Sie können $(\exp(q))^r = \exp(qr)$ für alle $q, r \in \mathbb{Q}$ benutzen. Zeigen Sie, dass dies auch für $q \in \mathbb{R}$ gilt.

Für $a \in \mathbb{R}_{>0}$, $x \in \mathbb{R}$ definiert man die allgemeine Potenz durch

$$a^x := e^{x \ln(a)} := \exp(x \ln(a)).$$

Erläutern Sie dem Weihnachtsmann, warum die üblichen Potenzgesetze auch für beliebige $x \in \mathbb{R}$ gelten und die allgemeine Exponentialfunktion $x \mapsto a^x$ auf ganz \mathbb{R} stetig und positiv ist für jedes a > 0.

Aufgabe 9.2 4 Punkte

Betrachten Sie die trigonometrischen Funktionen Sinus und Cosinus und beweisen Sie folgende Aussagen.

(a) Beweisen Sie mithilfe des Leibnizkriteriums für alternierende Reihen die Gültigkeit der nachstehenden Abschätzungen für alle $x \in [-2, 2] \setminus \{0\}$

$$\left| \frac{\sin(x) - x}{x} \right| \le \frac{x^2}{3!}$$
 und $\left| \frac{\cos(x) - 1}{x} + \frac{x}{2} \right| \le \frac{|x|^3}{4!}$

(b) Folgern Sie aus Aufgabenteil (a), dass cos(2) < 0, aber cos(0) > 0 sowie

$$\sin(x) > 0 \quad \forall \ x \in (0, 2]$$

gilt.

(c) Zeigen Sie, dass für alle $x, h \in \mathbb{R}$ gilt

$$\cos(x) - \cos(x+h) = 2\sin\left(x + \frac{1}{2}h\right)\sin\left(\frac{1}{2}h\right)$$

und folgern Sie, dass die Cosinus-Funktion cos auf dem Intervall [0,2] streng monoton fallend ist und genau eine Nullstelle innerhalb dieses Intervalls besitzt. Im Folgenden bezeichnen wir diese Nullstelle mit ξ und definieren $\pi := 2\xi$.

Hinweis: Verwenden Sie Aufgabe 8.2.

Bitte wenden!

Aufgabe 9.3 4 Punkte

Seien $a, b \in \mathbb{R}, a < b$, das zugehörige abgeschlossene Intervall I := [a, b] und ein Folge Lipschitz-stetiger Funktionen $(f_n)_{n \in \mathbb{N}}$ mit $f_n : I \to \mathbb{R}$ und einer gemeinsamen Lipschitz-Konstanten $L \in \mathbb{R}_+$ gegeben. Zeigen Sie die beiden Aussagen:

- (a) Die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$ ist gleichgradig stetig.
- (b) Falls für ein $x_0 \in I$ die Zahlenfolge $(f_n(x_0))_{n \in \mathbb{N}}$ beschränkt ist, ist $(f_n)_{n \in \mathbb{N}}$ gleichmäßig beschränkt.

Zeigen Sie mithilfe des Satzes von Arzelà-Ascoli, dass es mindestens einen Häufungswert der Funktionenfolge

$$(f_n)_{n\in\mathbb{N}}$$
 mit $f_n: [-\xi, \xi] \to \mathbb{R}$, $x \mapsto n \sin\left(\frac{x}{n}\right)$

gibt und bestimmen Sie diesen Häufungswert oder sogar die Grenzfunktion. Zeigen Sie hierfür zunächst die Identität

$$\sin(x+h) - \sin(x) = 2\cos\left(x + \frac{1}{2}h\right)\sin\left(\frac{1}{2}h\right) \qquad \forall x, h \in \mathbb{R}$$
 (1)

sowie

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1. \tag{2}$$

Hinweis: Beachten Sie Aufgabe 9.2.

Aufgabe 9.4 4 Punkte

(a) Beweisen Sie, dass die Sinusfunktion auf dem Intervall $[-\xi, \xi]$ streng monoton steigend und bijektiv mit $\sin(\pm \xi) = \pm 1$ ist. Ihre Umkehrfunktion bezeichnen wir mit Arcus-Sinus

$$\arcsin: [-1,1] \to [-\xi,\xi],$$

wobei $2\xi = \pi$ analog zur Aufgabe 9.2.

- (b) Zeigen Sie, dass $\cos : [0, \pi] \to [-1, 1]$ streng monoton fallend und bijektiv mit $\cos(0) = 1$ sowie $\cos(\pi) = -1$ ist. Die Umkehrfunktion sei Arcus-Cosinus arccos.
- (c) Bestimmen Sie die Ableitungen der in (a) und (b) genannten Funktionen mithilfe des Differenzenquotienten bzw. eines Satzes aus der Vorlesung, wobei für die Umkehrfunktionen die Differenzierbarkeit auf (-1,1) überprüft werden soll.

Wir
wünschen Ihnen ein
frohes, erholsames
Weihnachtsfest und einen
guten
Rutsch
ins neue Jahr!

Die folgenden Aufgaben sind Bonus-Aufgaben, die zusätzliche Punkte einbringen, aber nicht bearbeitet werden müssen.

*Aufgabe 9.5 4 Punkte

Für ein festes $n \in \mathbb{N}_0$ sei der reelle Vektorraum

$$V_n := \left\{ p \in C([0,1]) \mid p(x) = \sum_{k=0}^n a_k x^k \text{ mit } a_k \in \mathbb{R} \right\}$$

der reellwertigen Polynome vom Grad höchstens n auf dem Intervall [0,1] gegeben.

(a) Zeigen Sie, dass durch

$$||p|| := \max_{k=0,\dots,n} |a_k| \quad \forall p \in V_n \text{ mit } p(x) = \sum_{k=0}^n a_k x^k$$

eine Norm auf V_n definiert ist.

- (b) Ist durch $|||p||| := \max_{k=0,\dots,n} \sqrt{|a_k|}$ ebenfalls eine Norm auf V_n definiert? Beweisen oder widerlegen Sie dies.
- (c) Beweisen Sie, dass sich jedes $p \in V_n$ um einen beliebigen Punkt $x_0 \in [0, 1]$ entwickeln lassen kann, d.h. dass es die eindeutige Darstellung

$$p(x) = \sum_{k=0}^{n} b_k (x - x_0)^k$$

gilt mit $k! \cdot b_k = p^{(k)}(x_0)$ für $0 \le k \le n$ und die k-te Ableitung des Polynoms $p \in V_n$ an der Stelle x_0 . Dabei ist $p^{(0)} := p$ definiert.

(d) V_{∞} bezeichne den Vektorraum der für alle $x \in \mathbb{R}$ konvergenten Potenzreihen mit Zentrum $x_0 = 0$. Betrachten Sie $p \in V_{\infty}$ mit $p(x) := \sin(x)$ und ξ aus Aufgabe 9.2. Berechnen Sie für $x_0 = \xi$ die Folgenglieder von $(b_k)_{k \in \mathbb{N}_0}$ aus Aufgabenteil (c) und stellen Sie die bereits bekannte Potenzreihe

$$\sum_{k=0}^{\infty} b_k (x - \xi)^k$$

auf. Stimmt diese Potenzreihe mit der Sinus-Funktion überein?

*Aufgabe 9.6 4 Punkte

(a) Zeigen Sie die Abschätzung

$$\ln(1+x) \le x \quad \forall \ x \in \mathbb{R}, x > -1.$$

(b) Betrachten Sie die Reihe

$$\sum_{k=1}^{\infty} a_k \quad \text{mit} \quad a_k := \frac{1}{k} - \ln\left(\frac{k+1}{k}\right).$$

Zeigen Sie für alle $k \in \mathbb{N}$ die Abschätzungen

$$0 \le a_k \le \frac{1}{k(k+1)}$$

und folgern Sie die Konvergenz der Reihe.

(c) Gegeben sei die Folge $(\gamma_n)_{n\in\mathbb{N}}$ mit $\gamma_n=H_n-\ln(n)$ für die bereits definierten harmonischen Zahlen H_n . Zeigen Sie, dass $(\gamma_n)_{n\in\mathbb{N}}$ konvergiert mit einem Grenzwert $\gamma\in[0,1]$. Der Grenzwert ist die sogenannte Euler-Mascheroni-Konstante γ .